Sains Malaysiana 54(10)(2025): 2509-2523
http://doi.org/10.17576/jsm-2025-5410-14
Solid-Liquid Extraction of Rare Earth Elements from
Indonesian Wacopek Bauxite Tailings by the Sulfuric
Acid Leaching and Precipition Methods
(Pengekstrakan Pepejal-Cecair Unsur Nadir Bumi daripada Amang Bauksit Wacopek Indonesia dengan Kaedah Larut Lesap Asid Sulfurik dan Pemendakan)
ENY KUSRINI1,2,*, YUSWAN MUHARAM1, MERISA AULIA1, ANWAR USMAN3, AGUS BUDI PRASETYO4, NOFRIJON SOFYAN5, SUYANTI6, DONANTA DHANESWARA5, NYOMAN SUWARTHA7, PONKY IVO8, FRANKLIN APRILIO1, LEE D. WILSON9, EL-SAYED NEGIM10
& ARIF RAHMAN11
1Department
of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus
Baru UI,
Depok 16424, Indonesia
2Research
Group of Green Product and Fine Chemical Engineering, Laboratory of Chemical
Product Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424,
Indonesia
3Department
of Chemistry, Faculty of Science, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
4Research Center for Metallurgy, National Research and
Innovation Agency, Puspitek Area, Tangerang Selatan,
15314, Indonesia
5Department
of Metallurgical and Material Engineering, Faculty of Engineering, Universitas
Indonesia,
Kampus Baru UI, Depok 16424, Indonesia
6Research Center for Mining Technology, National Research and
Innovation Agency, Jl. Ir. Sutami KM. 15, Tanjung
Bintang, Lampung Selatan, Lampung 35361, Indonesia
7Department of Civil Engineering, Faculty of Engineering,
Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
8Research Center for Advanced Material, National Research and
Innovation Agency, Serpong, KST B.J. Habibie
Puspiptek, Setu, Tangerang Selatan, Banten, 15314, Indonesia
9Department of Chemistry, University of Saskatchewan 110 Science
Place, Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
10School of Materials Science and Green Technologies, Kazakh British
Technical University, St. Tole bi 59, 050000, Almaty, Kazakhstan
11Department of Chemistry, Faculty of Science and Mathematics, Universitas Negeri Jakarta, Rawamangun,
East Jakarta, Indonesia
Received: 6
October 2024/Accepted: 11 August 2025
Abstract
The high demand of rare earth elements (REEs) and geopolitical issues affecting their supply. Thus, a number of research have been conducted to find some secondary resources for producing of REEs. The work is aimed to extract of total REEs (TREEs) from Indonesian Wacopek bauxite tailing by solid-liquid extraction using sulfuric acid with concentrations being 1.5 to 5 M and the precipitation methods. Leaching and enrichment of total REEs from the bauxite tailings employed sulfuric acid as the solvent, where precipitation occurred in two stages using sodium sulfate and sodium phosphate as well as leaching kinetic have been investigated. The final extracted REEs are in the forms of their hydroxides. The experimental was conducted in the batch system by varying leaching time (5 to 60 min) and temperature (25 to 60 °C). Metal separation from the leachate was carried out by a solid-liquid extraction in H2SO4 at a liquid/solid (L/S) ratio of 20 mL/g, according to the optimal operating temperature at 60 °C, leaching time of 30 min, concentration of H2SO4 of 3 M, leachate volume of 500 mL, and L/S ratio of 20 mL/g. In the total REEs precipitation process with subsequent NH4OH-sodium sulfate and NH4OH-sodium phosphate precipitant system yielded 0.23 g and 9.8 g of REEs-sulfate and REEs-phosphate, respectively. The final REE-hydroxides gave the maximum total REEs yield as high as 90.75%. Leaching kinetics study was described by the shrinking core model for unchanged spherical particle sizes, and acid leaching occurred in two steps that governed by chemical reaction and diffusion process. The activation energy in the first chemical process was characterized to be 10.1 kJ/mol and the second diffusion process was 15.5 kJ/mol. In this work, the solid-liquid extraction process used sulfuric acid to bind to the TREEs contained in the Wacopek dried bauxite tailing potential for further separation of TREEs.
Keywords: Batch system; bauxite tailing; solid-liquid extraction; sulfuric acid leaching; total rare earth elements
Abstrak
Permintaan yang tinggi untuk unsur nadir bumi (REE) dan isu geopolitik telah menjejaskan bekalannya, justeru, banyak penyelidikan telah dijalankan untuk mencari beberapa sumber sekunder untuk menghasilkan REE. Penyelidikan ini bertujuan untuk mengekstrak jumlah REE (TREE) daripada amang bauksit Wacopek Indonesia melalui pengekstrakan pepejal-cecair menggunakan asid sulfurik dengan kepekatan 1.5 hingga 5 M
dan kaedah pemendakan. Larut resap dan pengayaan jumlah REE daripada amang bauksit telah menggunakan asid sulfurik sebagai pelarut dengan pemendakan berlaku dalam dua peringkat menggunakan natrium sulfat dan natrium fosfat serta penyelidikan kinetik larut lesap telah dikaji. Ekstrak akhir REE adalah dalam bentuk hidroksida. Uji kaji telah dijalankan dalam sistem kelompok dengan masa larut lesap (5 hingga 60 minit) dan suhu (25 hingga 60 °C) yang berbeza-beza. Pengasingan logam daripada larut lesap dilakukan dengan pengekstrakan pepejal-cecair dalam H2SO4 pada nisbah cecair/pepejal (L/S) 20 mL/g, mengikut suhu operasi optimum pada 60 °C,
masa larut lesap 30 minit, kepekatan H2SO4 3 M, isi padu larut resap 500 mL/S dan nisbah L/S 20 mL/g. Dalam proses pemendakan jumlah REE dengan sistem pemendakan NH4OH-natrium sulfat dan NH4OH-natrium fosfat seterusnya menghasilkan 0.23 g dan 9.8 g sulfat REE dan fosfat REE. Hidroksida REE akhir memberikan hasil maksimum jumlah REE sehingga 90.75%.
Kajian kinetik larut lesap telah diterangkan oleh model teras mengecut untuk saiz zarah sfera yang tidak berubah dan asid larut lesap berlaku dalam dua langkah yang dikawal oleh tindak balas kimia dan proses penyebaran. Tenaga pengaktifan dalam proses kimia pertama dicirikan sebagai 10.1 kJ/mol dan proses penyebaran kedua ialah 15.5 kJ/mol. Dalam kertas ini,
proses pengekstrakan pepejal-cecair menggunakan asid sulfurik untuk mengikat kepada TREE yang terkandung dalam amang bauksit kering Wacopek dan berpotensi untuk pemisahan selanjutnya bagi TREE.
Kata kunci: Amang bauksit; jumlah unsur nadir bumi; larut lesap asid sulfurik; pengekstrakan pepejal-cecair; sistem kelompok
REFERENCES
Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y. & Shibayama, A.
2018. Recovery of light and heavy rare earth elements from apatite ore using
sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy 179: 100-109. https://doi.org/10.1016/j.hydromet.2018.05.024
Binnemans, K., Jones, P.T., Blanpain,
B., Van Gerven, T., Yang, Y., Allan Walton, A. & Buchert, M. 2013.
Recycling of rare earths: A critical review. Journal of Cleaner Production 51: 1-22. http://dx.doi.org/10.1016/j.jclepro.2012.12.037.
Borra, C.R., Mermans,
J., Blanpain, B., Pontikes,
Y., Binnemans, K. & Van Gerven, T. 2016.
Selective recovery of rare earths from bauxite residue by combination of
sulfation, roasting and leaching. Minerals Engineering 92: 151-159.
https://doi.org/10.1016/j.mineng.2016.03.002
Borra, C.R., Pontikes,
Y., Binnemans, K. & Gerven,
T.M. 2015. Leaching of rare earths from bauxite residue (red mud). Minerals
Engineering 76: 20-27. https://doi.org/10.1016/j.mineng.2015.01.005
Cunningham, S., Etherington-Rivas, M. &
Azimi, G. 2024. Solubility of neodymium and dysprosium sulfates at different pH and temperature and the effect of yttrium sulfate,
sodium sulfate, and ammonium sulfate mixtures: Strengthening the predictive capacities of the OLI software. Hydrometallurgy 224: 106253. https://doi.org/10.1016/j.hydromet.2023.106253
Couturier, J., Oularé,
P.T., Collin, B., Lallemand, C., Kieffer, I., Longerey,
J., Chaurand, P., Rose, J., Borschneck,
D., Angeletti, B., Criquet, S., Podor, R., Pourkhorsandi, H., Arrachart, G.
& Levard, C. 2024. Yttrium speciation variability
in bauxite residues of various origins, ages and storage conditions. Journal
of Hazardous Materials 464: 132941.
https://doi.org/10.1016/j.jhazmat.2023.132941
Demol, J., Ho, E. & Senanayake, G.
2018. Sulfuric acid baking and leaching of rare earth elements, thorium and
phosphate from a monazite concentrate: Effect of bake temperature from 200 to
800 °C. Hydrometallurgy 179: 254-267.
https://doi.org/10.1016/j.hydromet.2018.06.002
Demol, J., Ho, E., Soldenhoff,
K. & Senanayake, G. 2019. The sulfuric acid bake and leach route for
processing of rare earth ores and concentrates: A review. Hydrometallurgy 188: 123-139. https://doi.org/10.1016/j.hydromet.2019.05.015
Evans, K. 2016. The history, challenges,
and new developments in the management and use of bauxite residue. J.
Sustain. Metall. 2: 316-331 https://doi.org/10.1007/s40831-016-0060-x
Guyonnet, D., Planchon, M., Rollat,
A., Escalon, V., Tuduri, J., Charles, N., Vaxelaire,
S., Dubois, D. & Fargier, H. 2015. Material flow
analysis applied to rare earth elements in Europe. J. Cleaner Prod. 107:
215-228. https://doi.org/10.1016/j.jclepro.2015.04.123
Jacinto, J., Henriques, B., Duarte, A.C.,
Vale, C. & Pereira, E. 2018. Removal and recovery of critical rare elements
from contaminated waters by living Gracilaria gracilis. Journal of Hazardous Materials 344: 531-538. https://doi.org/10.1016/j.jhazmat.2017.10.054
Johner, J.C.F., Hatami,
T., Carvalho, P.I.N. & Meireles, M.A.A. 2018. Impact of grinding procedure on the yield and quality
of the extract from clove buds using supercritical fluid extraction. The
Open Food Science Journal 10: 1-7.
http://dx.doi.org/10.2174/1874256401810010001
Kim, C.J., Yoon, H.S., Chung, K.W., Lee, J.Y., Kim, S.D., Shin, S.M., Lee, S.J., Joe, A.R., Lee, S.I., Yoo, S.J.
& Kim, S.H. 2014. Leaching
kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag. Hydrometallurgy 146: 133-137. https://doi.org/10.1016/j.hydromet.2014.04.003
Kusrini, E., Alhamid,
M.I., Wulandari, D.A., Fatkhurrahman,
M., Shahrin, E.W.E.S., Shahri,
N.N.M., Usman, A., Prasetyo, A.B., Sufyan, M.,
Rahman, A., Nugrahaningtyas, K.D. & Santosa, S.J. 2024. Simultaneous adsorption of
multicomponent lanthanide ions on pectin encapsulated zeolite A. Evergreen 11(1): 371-378. https://doi.org/10.5109/7172296
Kusrini, E., Alhamid,
M.I., Widiantoro, A.B., Daud, N.Z.A. & Usman, A.
2020a. Simultaneous adsorption of multi-lanthanides from aqueous silica sand
solution using pectin-activated carbon composite. Arabian Journal for
Science and Engineering 45: 7219-7230.
https://doi.org/10.1007/s13369-020-04386-w
Kusrini, E., Trisko, N., Harjanto, S.,
Rahman, A. & Usman, A. 2020b. Optimizing extraction and enrichment of
lanthanide from Indonesian low grade bauxite using
sequential magnetic separation, acid leaching and precipitation processes. Engineering
Journal 24(4): 327-337. https://doi.org/10.4186/ej.2020.24.4.327
Kusrini, E., Zulys,
A., Yogaswara, A., Prihandini,
W.W., Wulandari, D.A. & Usman, A. 2020c.
Extraction and enrichment of lanthanide from Indonesian low
grade bauxite using sulfuric acid heap leaching and phytic acid. Engineering
Journal 24(4): 305-314. https://doi.org/10.4186/ej.2020.24.4.305
Kusrini, E., Zulys,
A, Rachmana, A., Wulandari,
D.A., Muharam, Y., Usman, A. & Rahman, A. 2020d.
Enrichment and extraction of lanthanum from Indonesian silica sand using sulfuric
acid heap leaching, precipitation and complexation with phytic acid. Materials
Today: Proceedings 31: 421-425. https://doi.org/10.1016/j.matpr.2020.02.815
Kusrini, E., Muharam,
Y., Ricky, Prihandini, W.W. & Usman, A. 2020e. Modelling and simulation of
acid extraction of lanthanum from Indonesian low grade bauxite using fixed-bed extractor. Engineering Journal 24(4): 315-325.
https://doi.org/10.4186/ej.2020.24.4.315
Kusrini, E., Usman, A., Sani, F.A., Wilson,
L.D. & Abdullah, M.A.A. 2019a. Simultaneous adsorption of lanthanum and
yttrium from aqueous solution by durian rind biosorbent. Environ.
Monit. Assess. 191: 488. https://doi.org/10.1007/s10661-019-7634-6
Kusrini, E., Usman, A., Trisko, N.,
Harjanto, S. & Rahman, A. 2019b. Leaching kinetics of lanthanide in
sulfuric acid from low grade bauxite. Materials Today: Proceedings 18:
462-467. https://doi.org/10.1016/j.matpr.2019.06.213
Kusrini, E., Kinastiti,
D.D., Wilson, L., Usman, A. & Rahman, A. 2018a. Adsorption of lanthanide
ions from an aqueous solution in multicomponent systems using activated carbon
from banana peels (Musa paradisiaca L.). International Journal of Technology 9(6): 1132-1139. https://doi.org/10.14716/ijtech.v9i6.2361
Kusrini, E., Wicaksono,
W., Gunawan, C., Daud, N.Z.A. & Usman, A. 2018b. Kinetics, mechanism, and
thermodynamics of lanthanum adsorption on pectin extracted from durian rind. Journal
of Environmental Chemical Engineering 6: 6580-6588. https://doi.org/10.1016/j.jece.2018.10.018
Mahanty, B., Ansari, S.A., Mohapatra, P.K.,
Leoncini, A., Huskens, J. & Verboom, W. 2018.
Liquid-liquid extraction and facilitated transport of f-elements using an
N-pivot tripodal ligand. Journal of Hazardous Materials 347: 478-485.
https://doi.org/10.1016/j.jhazmat.2017.12.068
McCabe, W.L., Smith, J.C. & Harriott,
P. 2005. Unit Operations of Chemical Engineering. 5th ed. New York:
McGraw-Hill.
Poscher, A., Luidold,
S., Schnideritsch, H. & Antrekowitsch,
H. 2014. Extraction of lanthanides from spent glass polishing agent. 1st
European Rare Earth Resources Conferences 2014 (ERES2014), Leoben, Austria,
04‐07 September. https://doi.org/10.1016/B978-0-12-802328-0.00014-0
Qianlin, C., Xin, M., Xin, Z., Yunqi, L. &
Ming, Y. 2018. Extraction of rare earth ions from phosphate leach solution
using emulsion liquid membrane in concentrated nitric acid medium. Journal
of Rare Earths 36: 1190-1197. https://doi.org/10.1016/j.jre.2018.05.006
Rivera, R.M., Xakalashe,
B., Ounoughene, G., Binnemans,
K., Friedrich, B. & Gerven, T.V. 2019. Selective
rare earth element extraction using high-pressure acid leaching of slags
arising from the smelting of bauxite residue. Hydrometallurgy 184:
162-174. https://doi.org/10.1016/j.hydromet.2019.01.005
Rizos, V., Righetti, E. & Kassab, A.
2024. Understanding the barriers to recycling critical raw materials for the
energy transition: The case of rare earth permanent magnets. Energy Reports 12: 1673-1682. https://doi.org/10.1016/j.egyr.2024.07.022
Schreiber, A., Marx,
J. & Zapp, P. 2021. Life cycle assessment studies of rare earths production
- Findings from a systematic review. Science of the Total Environment 791: 148257. https://doi.org/10.1016/j.scitotenv.2021.148257
Taggart, R.K., Hower, J.C. & Hsu-Kim,
H. 2018. Effects of roasting additives and leaching parameters on the
extraction of rare earth elements from coal fly ash. International
Journal of Coal Geology 196: 106-114.
https://doi.org/10.1016/j.coal.2018.06.021
Vuppaladadiyam, S.S.V., Thomas, B.S., Kundu, C., Vuppaladadiyam, A.K., Duan, H.
& Bhattacharya, S. 2024. Can e-waste recycling provide a solution to the
scarcity of rare earth metals? An overview of e-waste recycling methods. Science of the Total Environment 924: 171453. https://doi.org/10.1016/j.scitotenv.2024.171453
Wu, L., Zhang, J., Huang, Z., Zhang, Y.,
Xie, F., Zhang, S. & Fan, H. 2023. Extraction of lithium as lithium
phosphate from bauxite mine tailings via mixed acid leaching and chemical
precipitation. Ore Geology Reviews 160: 105621.
https://doi.org/10.1016/j.oregeorev.2023.105621
Xiao, Y., Goyal, G.K., Su, J., Abbasi, H.,
Yan, H.H., Yao, X., Tantratian, K., Yan, Z.,
Alksninis, A., Phipps, M., Hernleye, P., Wang, Q.,
Zuo, L. & Chen, L. 2025. A comprehensive review of electric vehicle
recycling: Processes in selective collection, element extraction, and component
regeneration. Resources, Conservation & Recycling 219:
108309. https://doi.org/10.1016/j.resconrec.2025.108309
Zhou, D., Li, Z., Luo, X. & Su, J.
2017. Leaching of rare earth elements from contaminated soil using saponin and
rhamnolipid bio-surfactant. Journal of Rare Earths 35: 911-919. https://doi.org/10.1016/S1002-0721(17)60994-3
*Corresponding author; email:
eny.k@ui.ac.id